336 research outputs found

    Recent developments of MCViNE and its applications at SNS

    Get PDF
    MCViNE is an open source, object-oriented Monte Carlo neutron ray-tracing simulation software package. Its design allows for flexible, hierarchical representations of sophisticated instrument components such as detector systems, and samples with a variety of shapes and scattering kernels. Recently this flexible design has enabled several applications of MCViNE simulations at the Spallation Neutron Source (SNS) at Oak Ridge National Lab, including assisting design of neutron instruments at the second target station and design of novel sample environments, as well as studying effects of instrument resolution and multiple scattering. Here we provide an overview of the recent developments and new features of MCViNE since its initial introduction (Jiao et al 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 810, 86–99), and some example applications

    Optimal minimal measurements of mixed states

    Get PDF
    The optimal and minimal measuring strategy is obtained for a two-state system prepared in a mixed state with a probability given by any isotropic a priori distribution. We explicitly construct the specific optimal and minimal generalized measurements, which turn out to be independent of the a priori probability distribution, obtaining the best guesses for the unknown state as well as a closed expression for the maximal mean averaged fidelity. We do this for up to three copies of the unknown state in a way which leads to the generalization to any number of copies, which we then present and prove.Comment: 20 pages, no figure

    Quantum probability distribution of arrival times and probability current density

    Get PDF
    This paper compares the proposal made in previous papers for a quantum probability distribution of the time of arrival at a certain point with the corresponding proposal based on the probability current density. Quantitative differences between the two formulations are examined analytically and numerically with the aim of establishing conditions under which the proposals might be tested by experiment. It is found that quantum regime conditions produce the biggest differences between the formulations which are otherwise near indistinguishable. These results indicate that in order to discriminate conclusively among the different alternatives, the corresponding experimental test should be performed in the quantum regime and with sufficiently high resolution so as to resolve small quantum efects.Comment: 21 pages, 7 figures, LaTeX; Revised version to appear in Phys. Rev. A (many small changes

    Probability distribution of arrival times in quantum mechanics

    Get PDF
    In a previous paper [V. Delgado and J. G. Muga, Phys. Rev. A 56, 3425 (1997)] we introduced a self-adjoint operator T^(X)\hat {{\cal T}}(X) whose eigenstates can be used to define consistently a probability distribution of the time of arrival at a given spatial point. In the present work we show that the probability distribution previously proposed can be well understood on classical grounds in the sense that it is given by the expectation value of a certain positive definite operator J^(+)(X)\hat J^{(+)}(X) which is nothing but a straightforward quantum version of the modulus of the classical current. For quantum states highly localized in momentum space about a certain momentum p00p_0 \neq 0, the expectation value of J^(+)(X)\hat J^{(+)}(X) becomes indistinguishable from the quantum probability current. This fact may provide a justification for the common practice of using the latter quantity as a probability distribution of arrival times.Comment: 21 pages, LaTeX, no figures; A Note added; To be published in Phys. Rev.

    Energy depletion and opportunistic microbial colonisation in white syndrome lesions from corals across the Indo-Pacific

    Get PDF
    Corals are dependent upon lipids as energy reserves to mount a metabolic response to biotic and abiotic challenges. This study profiled lipids, fatty acids, and microbial communities of healthy and white syndrome (WS) diseased colonies of Acropora hyacinthus sampled from reefs in Western Australia, the Great Barrier Reef, and Palmyra Atoll. Total lipid levels varied significantly among locations, though a consistent stepwise decrease from healthy tissues from healthy colonies (HH) to healthy tissue on WS-diseased colonies (HD; i.e. preceding the lesion boundary) to diseased tissue on diseased colonies (DD; i.e. lesion front) was observed, demonstrating a reduction in energy reserves. Lipids in HH tissues were comprised of high energy lipid classes, while HD and DD tissues contained greater proportions of structural lipids. Bacterial profiling through 16S rRNA gene sequencing and histology showed no bacterial taxa linked to WS causation. However, the relative abundance of Rhodobacteraceae-affiliated sequences increased in DD tissues, suggesting opportunistic proliferation of these taxa. While the cause of WS remains inconclusive, this study demonstrates that the lipid profiles of HD tissues was more similar to DD tissues than to HH tissues, reflecting a colony-wide systemic effect and provides insight into the metabolic immune response of WS-infected Indo-Pacific corals

    Seatbelt use and risk of major injuries sustained by vehicle occupants during motor-vehicle crashes: A systematic review and meta-analysis of cohort studies

    Get PDF
    BackgroundIn 2004, a World Health Report on road safety called for enforcement of measures such as seatbelt use, effective at minimizing morbidity and mortality caused by road traffic accidents. However, injuries caused by seatbelt use have also been described. Over a decade after publication of the World Health Report on road safety, this study sought to investigate the relationship between seatbelt use and major injuries in belted compared to unbelted passengers.MethodsCohort studies published in English language from 2005 to 2018 were retrieved from seven databases. Critical appraisal of studies was carried out using the Scottish Intercollegiate Guidelines Network (SIGN) checklist. Pooled risk of major injuries was assessed using the random effects meta-analytic model. Heterogeneity was quantified using I-squared and Tau-squared statistics. Funnel plots and Egger's test were used to investigate publication bias. This review is registered in PROSPERO (CRD42015020309).ResultsEleven studies, all carried out in developed countries were included. Overall, the risk of any major injury was significantly lower in belted passengers compared to unbelted passengers (RR 0.47; 95%CI, 0.29 to 0.80; I-2=99.7; P=0.000). When analysed by crash types, belt use significantly reduced the risk of any injury (RR 0.35; 95%CI, 0.24 to 0.52). Seatbelt use reduces the risk of facial injuries (RR=0.56, 95% CI=0.37 to 0.84), abdominal injuries (RR=0.87; 95% CI=0.78 to 0.98) and, spinal injuries (RR=0.56, 95% CI=0.37 to 0.84). However, we found no statistically significant difference in risk of head injuries (RR=0.49; 95% CI=0.22 to 1.08), neck injuries (RR=0.69: 95%CI 0.07 to 6.44), thoracic injuries (RR 0.96, 95%CI, 0.74 to 1.24), upper limb injuries (RR=1.05, 95%CI 0.83 to 1.34) and lower limb injuries (RR=0.77, 95%CI 0.58 to 1.04) between belted and non-belted passengers.ConclusionIn sum, the risk of most major road traffic injuries is lower in seatbelt users. Findings were inconclusive regarding seatbelt use and susceptibility to thoracic, head and neck injuries during road traffic accidents. Awareness should be raised about the dangers of inadequate seatbelt use. Future research should aim to assess the effects of seatbelt use on major injuries by crash type

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors

    Community based weighing of newborns and use of mobile phones by village elders in rural settings in Kenya: a decentralised approach to health care provision

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identifying every pregnancy, regardless of home or health facility delivery, is crucial to accurately estimating maternal and neonatal mortality. Furthermore, obtaining birth weights and other anthropometric measurements in rural settings in resource limited countries is a difficult challenge. Unfortunately for the majority of infants born outside of a health care facility, pregnancies are often not recorded and birth weights are not accurately known. Data from the initial 6 months of the Maternal and Neonatal Health (MNH) Registry Study of the Global Network for Women and Children's Health study area in Kenya revealed that up to 70% of newborns did not have exact weights measured and recorded by the end of the first week of life; nearly all of these infants were born outside health facilities.</p> <p>Methods</p> <p>To more completely obtain accurate birth weights for all infants, regardless of delivery site, village elders were engaged to assist in case finding for pregnancies and births. All elders were provided with weighing scales and mobile phones as tools to assist in subject enrollment and data recording. Subjects were instructed to bring the newborn infant to the home of the elder as soon as possible after birth for weight measurement.</p> <p>The proportion of pregnancies identified before delivery and the proportion of births with weights measured were compared before and after provision of weighing scales and mobile phones to village elders. Primary outcomes were the percent of infants with a measured birth weight (recorded within 7 days of birth) and the percent of women enrolled before delivery.</p> <p>Results</p> <p>The recorded birth weight increased from 43 ± 5.7% to 97 ± 1.1. The birth weight distributions between infants born and weighed in a health facility and those born at home and weighed by village elders were similar. In addition, a significant increase in the percent of subjects enrolled before delivery was found.</p> <p>Conclusions</p> <p>Pregnancy case finding and acquisition of birth weight information can be successfully shifted to the community level.</p
    corecore